# USB2.0 Type-C<sup>™</sup> & Regular USB Embedded Host Electrical Compliance test procedure

Version 0.86 - 9 September 2018

## **1** Contents

| 1. | Ref   | erenc       | e                                                         | . 4 |  |  |  |
|----|-------|-------------|-----------------------------------------------------------|-----|--|--|--|
| 2. | Bac   | Background4 |                                                           |     |  |  |  |
| 3. | Rec   | luired      | equipment and software                                    | . 5 |  |  |  |
|    | 3.1   | Osci        | lloscope, Software, and Accessories                       | . 5 |  |  |  |
|    | 3.2 ⊦ |             | Speed Embedded Host Tester (PIDVID)                       | . 5 |  |  |  |
|    | 3.3   | USB         | 2.0 Test fixtures                                         | . 6 |  |  |  |
|    | 3.3   | .1          | USB 2.0 Embedded Host with standard A-Receptacle          | . 6 |  |  |  |
|    | 3.3   | .2          | USB 2.0 Embedded Host with Type-C <sup>™</sup> receptacle | . 6 |  |  |  |
|    | 3.4   | USB         | CablesError! Bookmark not define                          | d.  |  |  |  |
|    | 3.5   | Misc        | cellaneous Cables and Devices                             | d.  |  |  |  |
| 4  | Tes   | t Proc      | edure                                                     | . 9 |  |  |  |
|    | 4.1   | Emb         | edded Host Downstream High Speed Signal Quality           | . 9 |  |  |  |
|    | 4.1   | .1          | Equipment Used                                            | . 9 |  |  |  |
|    | 4.1   | .2          | Setup Diagram                                             | 10  |  |  |  |
|    | 4.2   | Emb         | edded Host Test_J, Test_K and Test_SE0_NAK                | 12  |  |  |  |
|    | 4.2   | .1          | Equipment Used                                            | 12  |  |  |  |
|    | 4.2   | .2          | Setup Diagram                                             | 12  |  |  |  |
|    | 4.3   | Devi        | ce Packet Parameters                                      | 16  |  |  |  |
|    | 4.3   | .1          | Equipment Used                                            | 16  |  |  |  |
|    | 4.3   | .2          | Setup Diagram                                             | 16  |  |  |  |
|    | 4.4   | Host        | t CHIRP Timing                                            | 21  |  |  |  |
|    | 4.4   | .1          | Equipment Used                                            | 21  |  |  |  |
|    | 4.4   | .2          | Setup Diagram                                             | 21  |  |  |  |
|    | 4.5   | Host        | Suspend/Resume Timing                                     | 23  |  |  |  |
|    | 4.5   | .1          | Equipment Used                                            | 23  |  |  |  |
|    | 4.5   | .2          | Setup Diagram                                             | 23  |  |  |  |
|    | 4.6   | Dow         | Instream Full Speed Signal Quality Test                   | 26  |  |  |  |
|    | 4.6   | .1          | Equipment Used                                            | 26  |  |  |  |
|    | 4.6   | .2          | Setup Diagram                                             | 26  |  |  |  |
|    | 4.7   | Dow         | Instream Low Speed Signal Quality Test                    | 27  |  |  |  |
|    | 4.7   | .1          | Equipment Used                                            | 27  |  |  |  |
|    | 4.7   | .2          | Setup Diagram                                             | 28  |  |  |  |
|    | 4.8   | Drop        | D                                                         | 29  |  |  |  |

| 4.9 Droop        | 29 |
|------------------|----|
| 5. Fill out form | 30 |
| APPENDIX         | 31 |

# 1. Reference

| Standard                | Description                               | Revision | Status   |
|-------------------------|-------------------------------------------|----------|----------|
| USB 2.0 Spec            | USB 2.0 Specification with ECN            | 2.0      | Released |
| OTG & EH Supplement     |                                           |          | Released |
| <u>2.0</u>              |                                           |          |          |
| OTG & EH Compliance     |                                           |          | Released |
| <u>Plan</u>             |                                           |          |          |
| USB 2.0 Electrical Test |                                           | 1.06     | Released |
| Specification           |                                           |          |          |
| PIDVID USB 2 0 High     | PIDVID USB 2 0 High Speed Electrical      | 1.0      | Released |
| Speed Electrical        | Embedded Host and OTG MOI                 |          |          |
| Embedded Host           |                                           |          |          |
| USB2.0, 3.x and Battery | USB2.0/3.2/BC1.2 Drop Droop Test for non- | 1.4.1    | Released |
| Charging 1.2 Drop Droop | USB Type-C™ Products                      |          |          |
| Load Board              |                                           |          |          |

# 2. Background

USB 2.0 Compliance Committee under the direction of USB-IF, Inc develops the USB-IF High-speed Electrical Test Procedures. This document covers the method of measuring the USB 2.0 electrical tests for Embedded Hosts. Device, Hub, Windows based Host are covered in another document.

The High-speed Electrical Compliance Test Procedures verify the electrical requirements of highspeed USB operation of these embedded hosts designed to the USB 2.0 specification. In addition to passing the high-speed test requirements, high-speed capable device must also complete and pass the applicable legacy compliance tests identified in this document.

The document covers only the USB 2.0 electrical tests but are applicable for USB 3.1 Super Speed (5Gb or 10Gb) embedded hosts, since they need to be backward compatible with USB 2.0.

## 3. Required equipment and software

#### 3.1 Oscilloscope, Software, and Accessories

Check with scope vendor.

## 3.2 High Speed Embedded Host Tester (PIDVID)

In order to perform USB 2.0 High Speed electrical tests a High Speed product must support test modes as defined in section 7.1.20 of the USB 2.0 specification.

To active a test mode, the USB 2.0 Specification defines the *SetFeature()* command as the desired interface. The USB-IF offers for free a High Speed electrical Test Tool (HSET) which is Windows based, to activate the various test modes and operations.

Problem is that HSET only runs on Windows based PC systems and cannot be used for High Speed USB hosts that not run Windows PC systems.

The solution for this problem is that the "On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification" defines a method in entering the required high speed electrical test modes.

USB 3.1 Super Speed and Super Speed plus embedded host that support USB 2.0 High Speed should follow the same guidelines as described in this document.

It's important that non-windows based host vendors implement these test modes.

In order to send the required VID and PID the High Speed Embedded Host Tester (PID/VID) of <u>www.TestUSB.com</u> can be used. With this small bus powered device you select the required test mode with the selection switch and plug it into the High Speed embedded Host. Between the Embedded Host and PID/VID the high speed host test fixture is connected in order to make it possible to probe the signals.



#### 3.3 USB 2.0 Test fixtures

#### 3.3.1 USB 2.0 Embedded Host with standard A-Receptacle

The USB-IF High Speed fixture only require connecting SMA cables that are connected directly to the scope. Do note that the USB-IF fixture is only able in measuring the High Speed Eye diagram and therefore it is still required to use the TestUSB FS-HUCR for the remaining high speed electrical tests. The USB-IF fixtures can be purchased via the USB-IF eStore at:

http://www.usb.org/developers/estoreinfo/

| Test fixture Description                                            | Part number         | High-Speed<br>Device | Full/Low Speed<br>Device |
|---------------------------------------------------------------------|---------------------|----------------------|--------------------------|
| High Speed USB-IF Host Eye diagram fixture                          | USB-IF              | 1                    | n/a                      |
|                                                                     | Device test Fixture |                      |                          |
| USB2.0 Type-C <sup>™</sup> Signal Quality Test Fixture (Receptacle) | TestUSB FS-HUCR     | 1                    | 1                        |
| USB2.0 Drop Droop Fixture                                           | TestUSB FS-DD       | 1                    | 1                        |

This document covers the high speed signal quality measurement for embedded host with Type-C<sup>™</sup> receptacles. It not cover the measurement for embedded hosts with standard A-receptacles. Remaining high speed tests beside signal quality are however covered in this document and require the FS-HUCR fixture.

The FS-HUCR and FS-DD can be purchase via: <a href="http://www.fixturesolution.com/product-category/usb-fixtures/">http://www.fixturesolution.com/product-category/usb-fixtures/</a>

#### 3.3.2 USB 2.0 Embedded Host with Type-C<sup>™</sup> receptacle

| Test fixture Description                                            | Part number     | High-Speed | Full/Low Speed |
|---------------------------------------------------------------------|-----------------|------------|----------------|
|                                                                     |                 | Device     | Device         |
| USB2.0 Type-C <sup>™</sup> Signal Quality Test Fixture (Receptacle) | TestUSB FS-HUCR | 1          | 1              |
| USB2.0 Type-C <sup>™</sup> Signal Quality Test Fixture (Plug)       | TestUSB FS-HUCP | 1          | n/a            |
| USB2.0 Drop Droop Fixture                                           | TestUSB FS-DD   | 1          | 1              |

#### FS-HUCP



#### FS-HUCR



## FS-DD



The FS-HUCR, FS-HUCP and FS-DD fixture can be purchase via: http://www.fixturesolution.com/product-category/usb-fixtures/

## 3.4 USB Cables

| Cable Description                                                           | Required for device                 | Part number           | Qty |
|-----------------------------------------------------------------------------|-------------------------------------|-----------------------|-----|
| USB 2.0 10cm Type-C <sup>™</sup> Plug to Standard A-plug                    | All devices                         | FS-HC-CP-10-P         | 2   |
| USB 3.X 10cm Type-C <sup>™</sup> Plug to Standard A-receptacle              | All devices                         | FS-SS+C-CP-10-AR-3A   | 2   |
| USB 2.0 10cm Type-C <sup>™</sup> Plug to Standard C-plug                    | All devices                         | FS-HC-CP-10-CP        | 2   |
| USB 2.0 500cm Type-C <sup>™</sup> Plug to Standard B-plug                   | with standard-B receptacle          | FS-HC-CP-500-BP       | 1   |
| USB 2.0 200cm Type-C <sup>™</sup> Plug to Standard micro B-plug             | with micro-B receptacle             | FS-HC-CP-200-uBP      | 1   |
| USB 2.0 400cm Type-C <sup>™</sup> Plug to Standard Type-C <sup>™</sup> Plug | with Type-C <sup>™</sup> receptacle | FS-HC-CP-400-CP       | 1   |
| USB 2.0 Type-C™ Plug to Type-C™ Plug (5A)                                   | All devices                         | FS-HC-CP-140-CP       | 2   |
| USB 2.0 Type-C <sup>™</sup> Plug to Standard A-plug                         | All devices                         | FS-HC-CP-150-AP       | 1   |
| USB 2.0 10cm Type-C <sup>™</sup> Plug to Standard A-plug (No Rp)            | For debug purpose                   | FS-HC-CPnRp-10-AP     | 1   |
| USB 3.X 10cm Type-C <sup>™</sup> Plug to Standard A-receptacle (No Rd)      | For debug purpose                   | FS-SS+C- CPnRd -10-AR | 1   |
| USB 2.0 Standard A-Plug to B-Plug                                           | To power FS-HUCR                    | Any cable             | 1   |

The above cables can be purchased separate via: http://www.fixturesolution.com/product-category/usb-cables/

Or the complete above cable set via:

http://www.fixturesolution.com/product/cable-set/

## 3.5 Miscellaneous Cables and Devices

| Description            | Required for device         | Part number                   | Qty |
|------------------------|-----------------------------|-------------------------------|-----|
| Digital multimeter     | All devices                 | Keysight 33401A or equivalent | 1   |
| Matched SMA Cable Pair | High Speed devices          | 50cm SMA cable pair           | 1   |
| Full Speed device      | High and Full Speed devices | Any full speed device         | 1   |
| Low Speed device       | Low Speed devices           | Any low speed device          | 1   |

A 50cm SMA cable pair can be purchased via: http://www.fixturesolution.com/product/sma-cable/

## 4 Test Procedure

## 4.1 Embedded Host Downstream High Speed Signal Quality

## This document covers the high speed signal quality measurement for embedded hosts with Type-C<sup>™</sup> receptacles. It not covers the measurement for embedded hosts with standard USB Areceptacle.

This test is measuring the high speed downstream near end Signal Quality (EYE diagram). For this test the host need to send out the Test\_Packet as defined in section 7.1.20 of the USB 2.0 specification. The USB-IF tool USBET will make the required analyses. This tool runs in the background of the Keysight N5416A/N5416B USB application.

| 4.1.1 Eq | uipment | Used |
|----------|---------|------|

| Quantity | Item                                  | Description/ Model                                       |
|----------|---------------------------------------|----------------------------------------------------------|
| 1        | Oscilloscope                          |                                                          |
| 1        | Oscilloscope USB software             | USBET                                                    |
| 2        | BNC to SMA adapter                    | Keysight 54855-67604                                     |
| 2        | SMA cables                            | Phase and length matched cable pair for example:         |
|          |                                       | e.g. Keysight 15443A                                     |
| 1        | Hi-Speed Signal Quality test fixture  | TestUSB                                                  |
|          |                                       | FS-HUCP                                                  |
| 1        | PIDVID                                | In order to force the Embedded Host in the required test |
|          |                                       | modes.                                                   |
|          |                                       | http://www.TestUSB/shop.htm                              |
| 1        | Standard-B plug to Type-C™ plug cable | Used to connect the PIDVID to Embedded Host              |
| 1        | USB cable between PIDVID and          | If host has:                                             |
|          | Embedded Host under test              | - Standard-A receptacle                                  |
|          |                                       | Any USB A-plug to B-plug cable                           |
|          |                                       | <ul> <li>Type-C<sup>™</sup> receptacle</li> </ul>        |
|          |                                       | Any USB Type-C <sup>™</sup> plug to B-plug cable         |

#### 4.1.2 Setup Diagram



Step 1: Initiate Test\_Packet tesmode

Connecting the Equipment:

- 1. Connect the BNC to SMA Adapter's connectors to the Oscilloscope. (In default D+ Channel 1 and D- Channel 3)
- 1. Attach the SMA cables to the SMA connectors D+ and D- of the on FS-HUCP.

Force the embedded host in the required test mode TEST\_PACKET:

- 2. Power on the Embedded Host under test.
- 3. Connect the PIDVID to Embedded Host with Std-B to Type-C<sup>™</sup> cable and see if white LED Test\_SE0\_NAK is on.
- 4. On the PIDVID select with the "UP" or "DOWN" button "TEST\_PACKET" and press the "enter" button. This forces the device under test to continuously transmit test packets.
- 5. Wait till the white LED of "TEST\_PACKET" start blinking.
- 6. Remove the PIDVID from Embedded host under test.

Performing measurement:

- 7. Connect the FS-HUCP fixture with SMA cables to the embedded host under test.
- 8. You should see the transmitted test packet on the oscilloscope as below.



- 9. Follow the scope vendor steps in acquiring the signal eye diagram and calculating the below signal quality compliance test items.
- EL\_6 Rise Time

EL\_6 Fall Time

- EL\_2 EL\_4 EL\_5 Data Eye and Mask Test
- EL\_7 Non-Monotonic Edge Test
  - 10. Flip/reverse attach the test fixture FS-HUCP to the embedded host under test.
  - 11. Repeat the above instructions 8. and 9. to do the measurement again.
  - 12. A power cycle of the embedded host is required in order to get it out of test mode and proceed the testing.

## 4.2 Embedded Host Test\_J, Test\_K and Test\_SE0\_NAK

## 4.2.1 Equipment Used

| Quantity | Item                                                      | Description/ Model                                                                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Oscilloscope                                              |                                                                                                                                                                                                                                                                                  |
| 1        | Oscilloscope USB software                                 |                                                                                                                                                                                                                                                                                  |
| 2        | BNC to SMA adapter                                        | Keysight 54855-67604                                                                                                                                                                                                                                                             |
| 2        | SMA cables                                                | Phase and length matched cable pair for example:                                                                                                                                                                                                                                 |
|          |                                                           | e.g. Keysight 15443A                                                                                                                                                                                                                                                             |
| 1        | Hi-Speed Signal Quality test fixture                      | TestUSB FS-HUCR                                                                                                                                                                                                                                                                  |
| 1        | PIDVID                                                    | In order to force the Embedded Host in the required test<br>modes.<br>http://www.fixturesolution.com/product/pidvid/                                                                                                                                                             |
| 1        | USB cable between PIDVID and FS-HUCR                      | Any USB Type-C™ plug to B-plug cable                                                                                                                                                                                                                                             |
|          | USB cable between FS-HUCR and<br>Embedded Host under test | <ul> <li>If host has:</li> <li>Standard-A receptacle</li> <li>Short USB C-plug to A-plug cable</li> <li>(FS-HC-CP-10-AP)</li> <li>Type-C<sup>™</sup> receptacle</li> <li>Short USB Type-C<sup>™</sup> plug to Type-C<sup>™</sup> plug cable</li> <li>(FS-HC-CP-10-CP)</li> </ul> |

#### 4.2.2 Setup Diagram



Connecting the Equipment:

- 1. Connect the BNC to SMA Adapter's connectors to the Oscilloscope. (In default D+ Channel 1 and D- Channel 3)
- 2. Attach the SMA cables to the SMA connectors D+ and D- of the on FS-HUCR.

Force the embedded host in the required test mode TEST\_J:

- 3. Power on the Embedded Host under test.
- 4. Connect Embedded Host under test with a short cable to DUT 1 of the FS-HUCR fixture.
- 5. Make sure switch S1 is OFF and Test mode LED is OFF.
- 6. Connect the PIDVID to the Host Init 1 port of the FS-HUCR fixture with a Std-B to Type-C<sup>™</sup> cable and see if white LED Test\_SE0\_NAK is on.
- 7. On the PIDVID select with the "UP" or "DOWN" button "TEST\_J" and press the "enter" button.
- 8. Wait till the white LED of "TEST\_J" start blinking.
- 9. Flip switch S1 to ON and Test Mode LED is ON.
- 10. You should see the following on the oscilloscope as below.



- 11. Follow the scope vendor steps in acquiring the above signal.
- 12. If host has Type-C<sup>™</sup> receptacle flip/reverse attach the short cable at the DUT1 side. If host has A-Receptacle skip step 13. and proceed with step 14.
- 13. Repeat the above instructions 10. and 11. to do the measurement again.
- 14. A power off the embedded host is required in order to get it out of test mode and proceed the testing.

Force the embedded host in the required test mode TEST\_K:

- 1. Power on the Embedded Host under test.
- 2. Connect Embedded Host under test with a short cable to DUT 1 of the FS-HUCR fixture.
- 3. Make sure switch S1 is OFF and Test mode LED is OFF.
- 4. Connect the PIDVID to the Host Init 1 port of the FS-HUCR fixture with a Std-B to Type-C<sup>™</sup> cable and see if white LED Test\_SE0\_NAK is on.
- 5. On the PIDVID select with the "UP" or "DOWN" button "TEST\_K" and press the "enter" button.
- 6. Wait till the white LED of "TEST\_K" start blinking.
- 7. Flip switch S1 to ON and Test Mode LED is ON.
- 8. You should see the following on the oscilloscope as below.

| Keysight Infin  | iium : Frid | ay, July 14,  | 2017 2:56:27 | PM          |            |                            |                             |           |         |         |
|-----------------|-------------|---------------|--------------|-------------|------------|----------------------------|-----------------------------|-----------|---------|---------|
| File Control Se | tup Display | Trigger Measu | re Math Ana  | 🗹 Utilities | Demos Help | )                          | 2:55 PM<br>7/14/2017        |           | VSIGHT  |         |
|                 | Single 🔿    | 4.00 GSa/s    | 62 kpts      | ~~~~        | ~~~~       | ~                          | $\sim\sim$                  | تا ـ ا    | 29 V    |         |
| 1 🕞 🗐 💿         | 100 mV/ 2   | 298 mV 💿 🛙    | 100 mV/ 298  | 8 mV 🕂 🕂    | ו          |                            |                             |           |         |         |
|                 |             |               |              |             |            |                            |                             |           |         | 698 mV  |
| s<br>Verti<br>t |             |               |              |             |            |                            |                             |           |         |         |
|                 |             |               |              |             |            |                            |                             |           |         |         |
|                 |             |               |              |             |            | et e britisk vertin foarte |                             |           |         | 398 mV  |
| •               |             |               |              |             |            |                            |                             |           |         |         |
| €<br>¶<br>Noas  |             |               |              |             |            |                            |                             |           |         |         |
|                 |             |               |              |             |            |                            |                             |           |         |         |
|                 |             |               |              |             |            |                            | l the set of a dama dis the |           |         | -2.0 mV |
|                 | 2           | 20-55         | 1.09         | 2.08        | 5.08       | 708                        | 00                          | 120       | 14.0    | -102 mV |
|                 | 2 µs -2.02  | µs -20 ns     | 198 рз       | 3.98 µs     | 2.98 µs    | 7.98 µs 92                 | 98 µs                       | 12.0 µs   | 14.0 µs | 10.0 µs |
|                 | 2.00 µs/    | p.9640000 µs  |              |             |            |                            |                             |           |         |         |
| Results         | Const       | L Mara        |              |             | 1.0        |                            | L C                         | 1         |         |         |
| Wayo(3)         | 424.166 mV  | 184.275 mV    | 11.1483 mV   | 424,500 mV  | 413.352 mV | 203.762 m                  | V 659                       | · · · · · |         |         |
| 2 V avq(1)      | 12.1412 mV  | 250.313 mV    | 11.8121 mV   | 422.365 mV  | 410.553 mV | 202.414 m                  | V 659                       |           |         |         |
|                 |             |               |              |             |            |                            |                             |           |         |         |

- 9. Follow the scope vendor steps in acquiring the above signal.
- 10. If host has Type-C<sup>™</sup> receptacle flip/reverse attach the short cable at the DUT1 side. If host has A-Receptacle skip step 11. and proceed with step 12.
- 11. Repeat the above instructions 8. and 9. to do the measurement again.
- 12. A power off the embedded host is required in order to get it out of test mode and proceed the testing.

Force the embedded host in the required test mode Test\_SE0\_NAK:

- 1. Power on the Embedded Host under test.
- 2. Connect Embedded Host under test with a short cable to DUT 1 of the FS-HUCR fixture.
- 3. Make sure switch S1 is OFF and Test mode LED is OFF.
- 4. Connect the PIDVID to the Host Init 1 port of the FS-HUCR fixture with a Std-B to Type-C<sup>™</sup> cable and see if white LED Test\_SE0\_NAK is on.
- 5. On the PIDVID select with the "UP" or "DOWN" button "Test\_SE0\_NAK" and press the "enter" button.
- 6. Wait till the white LED of "Test\_SEO\_NAK" start blinking.
- 7. Flip switch S1 to ON and Test Mode LED is ON.
- 8. You should see the following on the oscilloscope as below.

| Keysight Infi    | niium : Fri  | day, July 14, | 2017 2:57:02 | PM          |                 |             |                |            |                    |
|------------------|--------------|---------------|--------------|-------------|-----------------|-------------|----------------|------------|--------------------|
| File Control Se  | etup Display | Trigger Measu | re Math An   | 🖬 Utilities | Demos Help      | 7/1         | 156 PM         | CHNOLOGIES |                    |
| <u>りに 🚾 🔤</u>    | Single 🔿     | 4.00 GSa/s 2  | 62 kpts      | ~~~         | ~~~~            | 3           | ~~ <b>)</b> _[ | 3.29 V     | . <b>₽</b>         |
| 1 🖒 🗐 💶          | 100 mV/      | 298 mV 💿      | L00 mV/ 298  | 3 mV 🕂 🕂    | i)              |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            | 698 mV             |
|                  |              |               |              |             |                 |             |                |            |                    |
| + C              |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
| ÎN "             |              |               |              |             |                 |             |                |            |                    |
| •                |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
| <u>କ</u> ୍ଲ୍ୟୀ 🖉 |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            | -2.0 mV            |
|                  |              |               |              |             |                 |             |                |            |                    |
| -4.0             | 02 µs -2.02  | us -20 ns     | 1.98 µs      | 3.98 µs     | 5.98 µs 7.9     | 8 µs 9.98 µ | s 12.0 µs      | 14.0 µs    | -102 mV<br>16.0 µs |
|                  | 2.00 µs/     | 5.9840000 µs  | 0            |             |                 |             |                |            |                    |
| Results          | ·,           |               |              |             |                 |             |                |            |                    |
| Measurement      | Current      | Mean          | Min          | Max         | Range (Max-Min) | Std Dev     | Count          |            |                    |
| V avg(3)         | 6.26734 mV   | 151.239 mV    | 5.75832 mV   | 424.500 mV  | 418.742 mV      | 196.500 mV  | 809            |            |                    |
| V avg(1)         | 6.90217 mV   | 205.163 mV    | 6.55244 mV   | 422.365 mV  | 415.813 mV      | 205.748 mV  | 809            |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |
|                  |              |               |              |             |                 |             |                |            |                    |

- 9. Follow the scope vendor steps in acquiring the above signal.
- 10. If host has Type-C<sup>™</sup> receptacle flip/reverse attach the short cable at the DUT1 side. If host has A-Receptacle skip step 11. and proceed with step 13.
- 11. Repeat the above instructions 8. and 9. to do the measurement again.
- 12. A power off the embedded host is required in order to get it out of test mode and proceed the testing.

## 4.3 Device Packet Parameters

The test will measure the sync field (EL\_21) EOP field (EL\_25), EOP field of SOF (EL\_55), the delay between two host packets (EL\_23) and the response time of a host to a device packet (EL\_22).

#### 4.3.1 Equipment Used

| Quantity | ltem                                                             | Description/ Model                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Oscilloscope Keysight                                            |                                                                                                                                                                                                                             |
| 1        | Differential probe                                               |                                                                                                                                                                                                                             |
| 1        | Oscilloscope USB software                                        |                                                                                                                                                                                                                             |
| 1        | Hi-Speed Signal Quality test fixture                             | Fixture Solution FS-HUCR                                                                                                                                                                                                    |
| 1        | Cable between fixture<br>FS-HUCR and PIDVID                      | Any B-plug to Type-C <sup>™</sup> plug cable                                                                                                                                                                                |
| 1        | Cable between fixture<br>FS-HUCR and embedded<br>host under test | <ul> <li>If host has:</li> <li>Standard-A receptacle<br/>Any USB A-plug to USB Type-C<sup>™</sup> plug</li> <li>Type-C<sup>™</sup> receptacle<br/>Any USB Type-C<sup>™</sup> plug to USB Type-C<sup>™</sup> plug</li> </ul> |
| 1        | PIDVID                                                           | In order to force the Embedded Host in the required modes.<br>http://www.fixturesolution.com/product/pidvid/                                                                                                                |

#### 4.3.2 Setup Diagram



Connecting the Equipment:

1. Attach the external power to EXT\_POWER of the FS-HUCR. Leave the TEST switch 'S1' at the OFF position. Verify the red POWER ON LED is lit and the Test

Mode ON LED is not lit.

- 2. Connect the Embedded Host under test to DUT 1 side of the FS-HUCR.
- 3. Connect to the Host Init 1 the PIDVID with Std-B to Type-C<sup>™</sup> cable and see if white LED Test\_SE0\_NAK is on.
- 4. Connect the differential probe with the + of the probe to + on the FS-HUCR.

Force the embedded host in sending the required packets:

This test is split up into two sub-tests.

#### Sub-test 1

 On the PIDVID select with the "UP" or "DOWN" button "GET\_DEVICE\_DESCRIPTOR" and press Enter. The white LED will start blinking and the host enumerates the PID/VID and responds to send SOFs for 15 seconds as shown below.



6. After 15 seconds of SOFs the host initiates the setup phase of the GetDescriptor() command. The host sends SETUP and DATA. (first and second packet)



- 7. Follow the scope vendor steps in acquiring the above signal.
- The host packets are the first two packets. Measure the sync field (EL\_21) EOP field (EL\_25) on the first two packets and measure the time between those two (EL\_23) packets.

#### EL\_21 Sync Field Length Test

#### EL\_25 EOP Length Test

#### EL\_23 Inter-packet Gap Between First 2 host Packets (Host – Host)

#### Sub-test 2

- 9. Disconnect and reconnect the PIDVID from FS-HUCR and see if white LED Test\_SE0\_NAK is on.
- On the PIDVID select with the "UP" or "DOWN" button "GET\_DEVICE\_DESCRIPTOR\_DATA" and press Enter The white LED will start blinking and the host enumerates the PID/VID and responds to send SOFs for 15 seconds as shown below.



11. After 15 seconds of SOFs the host issues an IN where the PIDVID send a DATA (second packet) and should look like below.



- 12. Follow the scope vendor steps in acquiring the above signal.
- 13. It will measure EL\_22 the time between DATA (second) and ACK (third).

#### EL\_22 Inter-packet Gap of a host to a device packet (Device – Host)

14. The host will keep sending SOFs as below.

| Elle Cont        | trol Setup Irigger Measure Analyze Utilities Demos Help                                                                 | 3 Jul 2012 8:52 PM                        |
|------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                  | 18.0 GSa/s 262 kpts                                                                                                     |                                           |
| 4                |                                                                                                                         | + 1                                       |
| +                |                                                                                                                         |                                           |
| ΤĮ               |                                                                                                                         |                                           |
| Πţ               |                                                                                                                         |                                           |
| 1]1              |                                                                                                                         |                                           |
| 1                |                                                                                                                         |                                           |
| 171              |                                                                                                                         |                                           |
| 17.              | AL.                                                                                                                     |                                           |
| More<br>(1 of 2) |                                                                                                                         |                                           |
| Delete           | Acquisition: To<br>Swapling Mode Real Time M<br>Capture Time 26.2 µs<br>Effective Res 100 ps/pt D<br>Bits Of Res 8 bits | rigger:<br>ode Edge (†)<br>nfiniiScan Off |

15. Follow the scope vendor steps in acquiring the above signal.

EL\_55 SOF EOP Width Test

## 4.4 Host CHIRP Timing

#### 4.4.1 Equipment Used

| Quantity | ltem                                                             | Description/ Model                                                                                                                                                                                                                                                    |  |
|----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1        | Oscilloscope                                                     |                                                                                                                                                                                                                                                                       |  |
| 2        | Differential probe                                               |                                                                                                                                                                                                                                                                       |  |
| 1        | Hi-Speed Signal Quality test fixture                             | Fixture Solution FS-HUCR                                                                                                                                                                                                                                              |  |
| 1        | Cable between fixture<br>FS-HUCR and embedded<br>host under test | <ul> <li>If host has:</li> <li>Standard-A receptacle<br/>Short USB A-plug to USB Type-C<sup>™</sup> plug<br/>FS-HC-CP-10-AP</li> <li>Type-C<sup>™</sup> receptacle<br/>Short USB Type-C<sup>™</sup> plug to USB Type-C<sup>™</sup> plug<br/>FS-HC-CP-10-CP</li> </ul> |  |
| 1        | Any High Speed USB-IF<br>Certified Device                        | Any known good high speed device can be used for this<br>test. When using the PIDVID not select a Test_Mode there it<br>requires to power cycle of the host.                                                                                                          |  |

#### 4.4.2 Setup Diagram



Connecting the Equipment:

- 1. Attach the external power to EXT\_POWER of the FS-HUCR. Leave the TEST switch at the OFF position. Verify the red power LED is lit and the yellow Test LED is not lit.
- 2. Connect the High Speed device to the Host Init 1 on the FS-HUCR using the appropriate cable when the device not have a captive cable.
- 3. Connect the probe on Channel 2 to the D- pin at zone 1 of the FS-HUCR.

- 4. Connect the probe on Channel 3 to the D+ pin at zone 1 of the FS-HUCR.
- 5. Connect the appropriate cable to DUT1

#### Test Instructions

- 6. Make sure that the scope is ready for trigger
- 7. Connect the cable at DUT1 side to the embedded host under test and get the following screen on the scope.



- 8. Follow the scope vendor steps in acquiring the above signal.
- EL\_33 CHIRP Timing Response
- EL\_34 CHIRP J K Width
- EL\_35 SOF Timing Response

## 4.5 Host Suspend/Resume Timing

It's not mandatory for an embedded host to support suspend, if the embedded host not support suspend, suspend and resume test should not be performed. This test verifies if the embedded host enters the suspend state and resumes.

#### 4.5.1 Equipment Used

| Quantity | ltem                                                             | Description/ Model                                                                                                                                                                                                                        |
|----------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Oscilloscope                                                     |                                                                                                                                                                                                                                           |
| 2        | Differential probe                                               |                                                                                                                                                                                                                                           |
| 1        | Hi-Speed Signal Quality test fixture                             | Fixture Solution FS-HUCR                                                                                                                                                                                                                  |
| 1        | Cable between fixture<br>FS-HUCR and embedded<br>host under test | If host has:<br>- Standard-A receptacle<br>Short USB A-plug to USB Type-C <sup>™</sup> plug<br>FS-HC-CP-10-AP<br>- Type-C <sup>™</sup> receptacle<br>Short USB Type-C <sup>™</sup> plug to USB Type-C <sup>™</sup> plug<br>FS-HC-CP-10-CP |
| 1        | PIDVID                                                           | In order to force the Embedded Host in the required modes. <u>http://www.fixturesolution.com/product/pidvid/</u>                                                                                                                          |
| 1        | Cable between fixture<br>FS-HUCR and PIDVID                      | Any B-plug to Type-C <sup>™</sup> plug cable                                                                                                                                                                                              |

#### 4.5.2 Setup Diagram



Connecting the Equipment:

- Attach the external power to EXT\_POWER of the FS-HUCR. Leave the TEST switch at the OFF position. Verify the red power LED is lit and the yellow Test LED is not lit.
- 2. Connect the Embedded Host under test to DUT 1 side of the FS-HUCR with the corresponding cable.
- 3. Connect to the Host Init 1 the PIDVID with Std-B to Type-C<sup>™</sup> cable and see if

white LED Test\_SE0\_NAK is on.

- 4. Connect the probe on Channel 2 to the D- pin at zone 1 of the FS-HUCR.
- 5. Connect the probe on Channel 3 to the D+ pin at zone 1 of the FS-HUCR.

Force the embedded host in suspend:

This test is split up into two sub-tests.

Sub-test 1

6. On the PIDVID select with the "UP" or "DOWN" button

"SUSPEND RESUME" and press Enter. The white LED will start blinking and the host enumerates the PIDVID and will enter suspend after 15 seconds as shown



7. Follow the scope vendor steps in acquiring the above signal.

#### Sub-test 2

8. After 15 seconds of suspend state the host shall issue a ResumeK state on the bus, then continue sending SOFs as shown below.



9. Follow the scope vendor steps in acquiring the above signal.

EL\_39 Suspend

EL\_41 Resume

## 4.6 Downstream Full Speed Signal Quality Test

Also high speed embedded hosts need to undergo this test.

#### 4.6.1 Equipment Used

| Qty | ltem                                                          | Description/ Model                                                               |
|-----|---------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1   | Oscilloscope                                                  |                                                                                  |
| 2   | Active probes                                                 |                                                                                  |
| 1   | Cable between Embedded Host<br>under test and FS-HUCR fixture | 5m Type-C™ plug to B-plug cable (FS-HC-CP-500-BP)                                |
| 1   | Device Hi-Speed Signal Quality Type-<br>C™ test fixture       | Fixture Solution FS-HUCR                                                         |
| 1   | 5V power supply                                               | Any Type-C <sup>™</sup> plug to A-plug cable that can take 5V from any USB host. |
| 1   | Any Full Speed USB-IF Certified<br>Device                     | Any known good full speed device can be used for this test.                      |

#### 4.6.2 Setup Diagram

#### Include graphical representation of the setup here

Connecting the Equipment

- 1. Attach the external power to EXT\_POWER of the FS-HUCR. Leave the TEST switch at the OFF position. Verify the red Power LED is lit and the Test Mode LED is not lit.
- 2. Connect the embedded host under test to DUT 1 side of the fixture with the appropriate long cable.
- 3. Connect the full speed device to the Host Init 1 of the FS-HUCR.
- 4. Connect the probe on Channel 2 to the D- pin at zone1 of the FS-HUCR.
- 5. Connect the probe on Channel 3 to the D+ pin at zone1 of the FS-HUCR.

#### Test Instructions

6. The host should send SOF on the oscilloscope as below.



- 7. Follow the oscilloscope vendor steps in acquiring the signal eye diagram and calculating the below signal quality compliance test items.
- 8. If embedded host under test has a Type-C<sup>™</sup> receptacle Flip/reverse attach the cable on the embedded host side under test.
- 9. Repeat the above instructions 6. and 7. to do the measurement again.

## 4.7 Downstream Low Speed Signal Quality Test

Only applicable when embedded host support low speed device (see TPL)

| Qty | Item                                                          | Description/ Model                                                                         |
|-----|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1   | Oscilloscope Keysight                                         |                                                                                            |
| 2   | Active probes                                                 |                                                                                            |
| 1   | Cable between Embedded Host<br>under test and FS-HUCR fixture | N.a Low speed device always has captive cable                                              |
| 1   | Device Hi-Speed Signal Quality Type-<br>C™ test fixture       | Fixture Solution FS-HUCR                                                                   |
| 1   | 5V power supply                                               | Any Type-C <sup>™</sup> plug to A-plug cable that can take 5V from any USB host.           |
| 1   | Any Low Speed device from TPL                                 | Any known good low speed device from the Target Peripheral List can be used for this test. |

#### 4.7.1 Equipment Used

## 4.7.2 Setup Diagram Include graphical representation of the setup here

Connecting the Equipment

- 1. Attach the external power to EXT\_POWER of the FS-HUCR. Leave the TEST switch at the OFF position. Verify the red Power LED is lit and the Test Mode LED is not lit.
- 2. Connect the embedded host under test to DUT 1 side of the fixture with the appropriate long cable.
- 3. Connect the full speed device to the Host Init 1 of the FS-HUCR.
- 4. Connect the probe on Channel 2 to the D- pin at zone1 of the FS-HUCR.
- 5. Connect the probe on Channel 3 to the D+ pin at zone1 of the FS-HUCR.

#### Test Instructions

6. The host should send SOF on the oscilloscope as below.



- 7. Follow the oscilloscope vendor steps in acquiring the signal eye diagram and calculating the below signal quality compliance test items.
- If embedded host under test has a Type-C<sup>™</sup> receptacle Flip/reverse attach the cable on the embedded host side under test.
- 9. Repeat the above instructions 6. and 7. to do the measurement again.

4.8 Drop

4.9 Droop

To Be Done

# 5. Fill out form

| ID    | Test                    | Requirement           | Measured Value  | Status        |
|-------|-------------------------|-----------------------|-----------------|---------------|
| EL_2  | High-Speed              | 480 Mb/s +-0.05%      | Mb/s            | Pass/Fail     |
|       | transmitter data rate   |                       |                 |               |
| EL_3  | Data Eye and Mask       | Not touch near end    | Number EYE hits | Pass/Fail     |
|       | Test                    | EYE                   |                 |               |
| EL_6  | Rise and fall times     | > 500 ps (*)          | ps              | Pass/Fail     |
| EL_7  | Monotonic edge          | Data transition is    |                 | Pass/Fail     |
|       |                         | monotonic             |                 |               |
| EL_21 | Sync Field Length Test  | (**)                  | ns              | Pass/Fail/NA  |
| EL_25 | EOP Length Test         | (**)                  | ns              | Pass/Fail/NA  |
| EL_23 | Inter-packet Gap        | (**)                  | ns              | Pass/Fail/NA  |
|       | Between First 2 host    |                       |                 |               |
|       | Packets (Host – Host)   |                       |                 |               |
| EL_22 | Inter-packet Gap of a   | (**)                  | ns              | Pass/Fail     |
|       | host to a device packet |                       |                 |               |
|       | (Device – Host)         | (1.1.)                |                 |               |
| EL_55 | SOF EOP Width Test      | (**)                  | ns              | Pass/Fail     |
| EL_33 | CHIRP Timing            | 1ns to 100µs          | μs              | Pass/Fail     |
|       | Response                |                       |                 |               |
| EL_34 | CHIRP J K Width         | 40µs to 60µs          | μs              | Pass/Fail     |
| EL_35 | SOF Timing Response     | 100µs to 500µs        | μs              | Pass/Fail     |
| EL_39 | Suspend                 | Enter suspend         |                 | Pass/Fail/NA  |
| EL_41 | Resume                  | < 3ms                 |                 | Pass/Fail/NA  |
| EL_8  | Host J Test             | Driven data line      | D+: mV          | Pass/Fail     |
|       |                         | 400mV +-10% (***)     |                 |               |
|       |                         | Non driven data lines | D-: mV          |               |
|       |                         | max 10mV              |                 |               |
| EL_8  | Host K Test             | Driven data line      | D+: mV          | Pass/Fail     |
|       |                         | 400mV +-10% (***)     |                 |               |
|       |                         | Non data driven lines | D-: mv          |               |
|       |                         | Man data drivan linas |                 | Dass/Fail     |
| EL_9  | HOST SEU_NAK TEST       | may 10mV              | D+: IIIV        | Pd\$5/Fd11    |
|       |                         |                       | D-: m\/         |               |
|       | Full Speed Quality      |                       |                 | Pass/Fail     |
|       | Low Speed Quality       |                       |                 | Pass/Fail/NA  |
|       | Vhus Drop               |                       |                 | Dass/Eail     |
|       | Vous Droop              | < 220m1/              | m\/             |               |
|       | vous Droop              | < 350IIIV             | IIIV            | Fass/Fall/INA |

(\*) EL\_6 waiver low as 100ps:

http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#87

(\*\*) EL\_22 for products with an internal hub to the embedded host may have an additional delay: <a href="http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#43">http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#43</a>

One HS Hub may truncate up to 4 bits of the sync field and add up to 4 bits to the EOP.

(\*\*\*) EL\_8 only the non-driven lines are pass / fail criteria

http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#67 http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#92

# APPENDIX