Testronic Laboratories

USB Testing

Pascal Berten
Testronic Labs nv
Wetenschapspark 7
Diepenbeek, Belgium
Web: www.testroniclabs.com
Tel: + 32 (0) 11 56 04 39
Mobile +32 (0) 475 85 32 17
Agenda

- Introduction Testroniclabs
- USB-IF Compliance program
- Limitations of the USB-IF Compliance program
- Most common issues
 - Electrical
 - Power consumption
 - USBCV
 - Link Layer testing
 - Interoperability
- New USB 2.0 standards
 - Battery Charging
 - OTG and Embedded Host
Who we are?

TESTRONIC LABORATORIES
Offices in USA (2), UK (2), Belgium and Poland

Owned by:

CATALIS
German Stock Exchange listed
Non operational Holding focussed on non-IP services to the Digital Media Industries
2008: 40 mln euros consolidated revenues - very sound and stable financial ratio’s
Services Overview

- Software Testing
- Hardware Testing
- Home Entertainment Testing
- Game Testing

Inhouse Test Labo
Consultancy
Company Services

Testronic Laboratories

Labs

- Laboratories
 - Film
 - DVD
 - Blu-ray
 - Interactive
 - Games
 - Nintendo
 - Sony
 - Microsoft
 - PC
 - Interactive Software
 - Websites
 - CD-ROMs/DVD-ROMs
 - Standalone Applications
 - Networked Systems
 - Digital Television
 - IRD / Set-top boxes
 - Back-end systems
 - DTV Compatibility
 - PC & Consumer Electronics
 - Internal Interfaces
 - External Interfaces
 - Home Networking
 - Storage
 - Embedded Software

On-site testers

- Software

- Hardware

Consultancy

- Pre-certification and pre-compliance testing:
 - PCI Express
 - WHQL
 - HDMI
 - DVI
 - Ethernet
 - IEEE-1394 (Firewire)
 - JavaVerified

- Official certification:
 - USB certification for all CE/PC products
 - Wireless USB
 - IEEE-1394 (Firewire)
 - DLNA
 - SATA
 - Wi-Fi
 - USB for all products
 - Bluetooth
 - WiMedia
 - Wireless USB
Hardware Testing - Certification

- System Level QA
- Early developments
- Final products
- Component Level
- FPGA boards
- Reference Design
- Low Level Software
- Drivers, Firmwares
- Embedded Apps.

- USB (All products)
- Serial ATA
- DLNA
- WiMedia
- ExpressCard
- IEEE-1394

- PCI Express
- HDMI/ DVI
- WHQL
- MIPI…

Consultancy or Inhouse Test Lab
Global Overview of Customers
USB-IF Compliance program

- Testing a DUT against set rules / Test specifications of a technical organization
- Ensure interoperability in an interconnected environment
- Set a bar that is high enough to promote the technology
- Set a bar that is low enough to encourage vendors to obtain a logo
Why obtain the logo?

- Certified logo usage only after passing the certification program
- Ensure interoperability across other products
- Give the vendor and customer confidence that the product is compliant according to the specification
- Product will be listed on the Integrators List at WWW.USB.ORG
- Some computer stores sell require the product to be certified
- OEM, Silicon or IP providers give their customers the confidence that their product is capable in getting certified.
USB-IF Compliance test

<table>
<thead>
<tr>
<th>IOP</th>
<th>Avg Current</th>
<th>USBCV</th>
<th>Back-Voltage</th>
<th>SS Electrical</th>
<th>HS Electrical</th>
<th>FS Electrical</th>
<th>OTG tests</th>
<th>Checklists</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limitations of USB-IF compliance plan

- Certification is not a replacement for validation
- Latest USB specs are not covered (Battery Charging, OTG 2.0, UASP, MTP...)
- Protocol not covered (USB 2.0 Ch8)
- Testing is done under limited variations
 - One Operating systems
 - One IOP system setup (Goldtree)
 - Interoperability tested against a limited set of devices
 - Only tested under ambient conditions
 - Electrical clean environment
 - In spec testing (often devices and host are out spec)
Full Low Speed Electrical

- **Legacy electrical test**
 - Signal Quality (EYE)
 - Inrush
 - Drop/Droop

- **Device and/or Host FS Signal Quality**
 - Make sure you capture the correct packet (packets from host/hub are on the same D+/D- line as from the device side)
 - Make sure you use the latest USBET (www.usb.org)
 - Some ESD and/or EMI components make the eye failures
Full Low Speed Electrical

- Device and/or Host FS/LS Signal Quality
 - Measured after the required length of cable
 - Std B / Std A receptacle = 5m
 - USB silicon is advisable to measure after 5m
 - USB host must be measured after 5m from Std A receptacle
 - Mini B receptacle = 4.5m
 - Micro B receptacle = 2m
 - Make sure the external clock of the USB silicon is set properly
 - Not use long internal cables (e.g. ehosts inside a car)
Inrush current

- **Device Inrush (< 50µC)**
 - Make sure you have the correct setup
 - Calibrate current probe (set it to 0mA before measuring)
 - Use the latest USBET
 - Capture a period of 100ms
 - Not use a too large capacitor over Vbus and GND (> 10µF)
 - If soft-start circuit is available make sure it’s well adjust
 - Test the device also without external power connected
 - Test with empty battery

![Graph of inrush current and threshold over time](image)
Host/Hub Drop Droop

- Host/Hub Vbus Drop (4.75V and 5.25V) Droop (330mV)
 - Make sure the full length of the Vbus PCB trace is wide enough for the maximum current Vbus must handle.
 - Use a large capacitor over Vbus to avoid Vbus droop failures.
 - Differences in Fixtures
 - Make sure a good power supply is used that can handle the full stressed system + full load of Vbus USB.
 - Do additional stress tests
 Keep in mind that there are allot of device that consume more power than the USB spec allow (e.g. battery charging devices, external hard drives, iPod like devices, …)
 - Test with more load
 - Test an over current event
Back Voltage

- **Device Back Voltage (<400mV)**
 - Measure the voltage over Vbus, D+, D- and GND this should be less than 400mV
 - Some devices have their pull-up resistor at all times high even when Vbus is not connected. This will result in ~3V between D+ and GND
High Speed Electrical

- Signal Quality (eye)
- Receiver sensitivity
- Chirp, Packet Parameter, Suspend/Resume/Reset, Test J/K/SE0_NAK

Device and/or HS Signal Quality

- Support of HS electrical test modes
 - Embedded Host or OTG A device often not enter the required HS electrical test modes via the required VID/PID detection!!!
High Speed Electrical

- **Device and/or Host HS Signal Quality**
 - It’s known that there are differences between HS EYE diagrams depending on the setup. Since the edges are becoming faster and faster this is becoming more problematic. Things that effect the differences are:
 - Fixtures
 - USB Adapters (short cable or adapter between fixture and DUT)
 - Probe (different type and bandwidth)
 - Probing tips
 - USBET
 - Take multiple eye diagrams or measure a real time eye since some products will randomly fail
High Speed Electrical

- Device and/or HS Signal Quality
 - PCB
 - Impedance mismatch (eye failures)
 - External clock not set properly (jitter or data rate failure)
 - Too long traces or internal cables (for a host it’s always near end at the A receptacle even if there is internal cable)
 - Too fast edges (< 500ps)
 - New silicon is becoming faster (even certified once)
 - Make sure you measure as near as possible to the device
 - If require add capacitors or extend the length D+/-
High Speed Electrical

- Receiver testing
 - No squelch (still answer all NAK) < 150mV
 - Squelch (no more answer NAK) > 100mV

- New PHY’s often have the capability to change some electrical parameters like Tx EYE amplitude or Receiver settings, make sure they are set for your design
Super Speed Electrical

- Products not send out the required CP0 or CP1 or they not stay in this mode.
- Not enter loopback for Rx
- SSC (spread spectrum clocking) is mandatory but is not always enabled
 - There are hosts that incorrectly use centre-spread SSC instead of down-spread SSC what will result in Interop problems.
- Receiver setup problems
 - Setup not calibrated
 - Broken fixtures (or too mush used)
 - Bad 3m cable
Power consumption

- Measure current when external power is removed
- Measure current in worst case
 - When activating all interfaces
 - Empty battery
- Measure the current states with USBCV
 - Unconfigured current (USB 2.0 <100mA; USB 3.0 <150mA)
 - Configured current (< max power descriptor USB 2.0 < 500 mA USB 3.0 900mA)
- Suspend current < 2.5mA
 - When remote wakeup feature is supported enable it
 - Measure when system is in S3 and see if Vbus is still on
Power consumption

- Devices and Hubs that claim to be self powered only but also operate bus powered.
 - If a device claim to be self powered the maximum power consumption is 100mA. It’s than not allowed to operate in bus powered mode and consume more.
 - If a USB 2.0 Hub claim to be self powered it should be able in handling 500mA/port a bus powered hub 100mA/port. However ~80% of the self powered hubs on the market work in bus powered mode and claim to be self powered.
USBCV

- All products must pass USB20CV and USB30CV
- USB30CV on Renesas and Fresco xHCI
- Devices must pass Chapter 9 and all other classes supported by device and USBCV
 - HID, MSC, UVC, PHDC, HUB, OTG
- Devices must pass all supported speeds
 - High Speed must also pass Full Speed
 - Super Speed must also pass High and if supported Full Speed
LPM supported devices should be tested on Fresco Logic and pass the LPM test

Use a HS Hub with Vbus switching for run USB20CV Ch9!!!
 – This will test if a device will be ready after 1 second that Vbus is switched on.

It’s advisable to run USBCV in different combinations of hubs and hosts.
USBCV

- Wrong USB version 1.1 this should be at least 2.0
- Device claim the wrong power state bus/self powered.
- When remote wakeup feature is enabled it will be tested.
Super Speed Link Layer Testing

- Link Layer (Chapter 7) testing will become mandatory to pass July 2011
- Also run the additional test the Ellisys Examiner has:
 - Chapter 6 (Physical layer test)
 - Power consumption test
 - Vbus acceptance test
Super Speed Link Layer Testing

- Pending HP Timer Deadline

The Port Under Test (PUT) receives the LGood prior to the HP timer deadline (3us) but still initiates a recovery. This indicates the PUT does not recognize the LGood in time. PUT should stay in U0, as the LGood is sent within the limits of the specification (near the 3us deadline). Recommendation: Relax the HP timer to more than 3us to give internal logic time to process incoming link command. Spec allows for +50% tolerance.
Super Speed Link Layer Testing

- **TPortConfiguration Issue**

The link test specification requires that the PUT complete the sending of Port Capabilities and Port Configuration LMPs within `tPortConfiguration` (20us) before most tests can be continued/executed. Some silicon designs improperly “gate” the sending of these LMPs upon receipt of these same LMPs from the host (or in our case, from Examiner). PUT must send these asynchronously (without regard for whether host/Examiner has sent them. The above example is a correct example (note PUT sends first and well within `tPortConfiguration`).
Super Speed Link Layer Testing

- Device Reaction to CRC5 Error

Per errata released in 6/2010, a PUT must initiate recovery upon receipt of a single CRC5 error in a link command. In this case, the PUT does not initiate a recovery; it stays in U0.

Recommendation: Ensure new silicon meets errata requirements.
Device Interoperability

- In order to pass USB-IF compliance you must pass the Goldtree

- Most common failure on the Goldtree are
 - First installation of the device
 - Development SW is not stable enough
 - Active suspend resume
 - S1, S3, S4
 - Remote wakeup
 - Device, SW application, driver must be able handling this.
Extended Device Interoperability

- Interoperability is the most important test
- Make sure that the device is tested:
 - All supported OS
 - Different Host controllers
 - Different hubs
 - Suspend states
 - Interop with other devices
 - Test your device on various embedded systems!!
Battery Charging 1.2 Spec

- **PD** (Portable Device)
 - Max 1.5A
- **CDP** (Charging Downstream Port)
 - Is also a regular USB Host
 - > 1.5A
 - Detection mechanism D+/−
- **DCP** (Dedicated Charging Port)
 - No other USB functionality
 - > 0.5A < 5A
 - D+/− shorten for detection (< 200 Ohm)

Do not expect that all USB chargers and devices interop with each other. It’s advisable to do a wide interoperability test.
Battery Charging 1.2

- ACA (Accessory Charger Adapter)
 - Is some sort of docking with different flavors
 - Is a charging adapter that can be placed between OTG or EH
 - Allowed to expand your charging ports

- Currently the USB-IF does not require specific battery charging tests. Except for the dead battery test by plugging in the BC device with a dead battery in a USB hub and seeing that it does not consume more than 100mA.

- Testing of BC compliance plan is not final and for details please check the BC Work Group.

- PET (MQP) is currently testing the 0.9 spec.
OTG & Embedded Host 2.0

- OTG & EH 2.0 Spec VS OTG 1.3
 - Include EH
 - Remove Vbus SRP
 - HW changes in order to support BC
 - Clarification on user experience and TPL
 - New Feature ADP (Attach Detection Protocol)
 - “Limited” OTG (no SRP support)
 - Additional Test modes (in order to run PET)

- Current USB-IF Compliance program is still 1.3
 - 2.0 Compliance program is in 0.9 faze
 - Still use the obsolete OPT
 - No ADP
 - Interoperability is vague
OTG & Embedded Host 2.0

- Mirco AB is only allowed for OTG products
- Mini AB is not allowed anymore
- Manual SRP should be possible for testing
- Implement all new testing VID/PID detection
- OTG A and EH is almost same testing
 - For OTG A most often an microA to StdA adapter is required.
OTG A and EH Interoperability

- Make clear messages
 - When devices are not supported
 - Over current event
 - Lack of performance (MSC not fast enough)
 - Hub scenario’s
 - ...

- Suspend Resume
 - Not mandatory
 - Make possible to test

- Try to avoid hubs support (if not make sense not support hubs).
 - Make sure a clear “hub not supported” message
 - Make sure no devices will be enumerated behind the hub
OTG A and EH Interoperability

- If hubs should be supported take following into account:
 - Max tier of hubs (error message when exceeding)
 - Max concurrently devices supported should be defined
 - Devices should be able to operate concurrently and independent or a selection method should be implemented.
 - Over current message
 - Should be able to handle legacy hubs (or error message)
 - Should be able in handling bus powered hubs
 - When connecting a high power device a message should appear and the device should not enumerate
OTG A and EH Interoperability

- If EH has multiple ports
 - Devices should be able to operate concurrently and independent or a selection method should be implemented.
 - Should pass Droop test (< 330mV voltage drop on other port)

- Class support
 - Is officially not allowed by the USB-IF
 - Class support is virtually impossible
 - MSC has allot of subclasses (Floppy, CDROM, flash card readers, MSC with multiple interfaces, internal hubs, …)
 - The SCSI transparent subclass is most used
 - SCSI however has many variants (www.t10.org)
 - UASP is coming along
 - Mouse and Keyboard are not a class
Checklists

- For USB-IF compliance the product must be registered at USB.ORG and the checklist must be submitted
- Make sure that the receptacles and/or cables used are USB-IF certified and have a TID!!!
- If USB silicon is not certified as silicon provider to provide you with the complete filled out Checklist
- Embedded Hosts or OTG products must submit a Target Peripheral List (TPL)
Waivers

- These are “permitted” failures on the test specifications
- Not unconditionally and not for ever
- Provided by the USB-IF, not by the Testlab
- Only granted in special occasions
 - (for example incorrect behavior of OS)
References

- http://compliance.usb.org – All latest USB-IF Compliance updates
- http://testusb.com – Part of Testroniclabs
 - Work in progress but already some topics
 - Embedded Host tester (force the EH or OTG product in the required test mode)
 - More USB testing product to come (short cables, fixtures, …)
Why test @ Testlab

- Testlab vs USB-IF compliance
 - No Travel costs
 - Developer is not tied to the USB-IF schedule for test runs
 - Not need to wait till there is an event
 - Debugging is hard
 - Confidentiality

- ICV has the latest Agilent and Ellisys equipment

- ICV is trained with latest test procedures, technology and use of the test environment

- TL can do more in-depth test on multiple layers
 - Electrical
 - Protocol
 - Framework
 - Interoperability
 - Environment
Why test @ ICV

- Go beyond USB-IF program
 - Consulting USB design
 - Testing under different temperature
 - Testing on Host and Hub controllers
 - Testing on Multiple OS’s
 - Testing on Embedded Systems
 - Testing on different devices (e.g. + 250 MSC devices)
 - In depth electrical (jitter tolerance, out spec, …)
 - Testing on different languages
 - WHQL (MS logo)
 - Ch8ck
Questions
Contacts

- Johan Craeybeckx
 - Chief Technology Officer (CTO)
 - Email: johan.craeybeckx@testroniclabs.com

- Pascal Berten
 - Senior Certification Engineer
 - Email: pascal.berten@testroniclabs.com

- Kristof Mommen
 - Certification Engineer
 - Email: kristof.mommen@testroniclabs.com